

	LIST OF CONTENTS	
SI.NO	TITLE	PAGE NO
1	COURSE PLAN	3 - 20
	SEMSTERII	
	2019 ADMISSION	
2	COURSE PLAN	21 - 38
	SEMSTERIV	
	2019 ADMISSION	

DEPARTMENT OF MATHEMATICS (SELF)

SEMESTER 2

Course	Title	Contact Hours	Credits	Internal	External	Total Marks
Complimen tary	STA 2C 02- PROBABILITY THEORY	4	3	15	60	75
Complimen tary	ME2C02	4	2	15	60	75
0010	MTS2B02 Calculus Of Single Variable-1	4	4	20	80	100

STA 2C 02- PROBABILITY THEORY. Lecture Hours per week: 5, Credits: 3 Internal: 15, External: 60, Examination 2 Hours

Objectives

- 1. To make the students able to understand basic probability axioms and rules.
- 2. To give the knowledge of calculating probabilities and derive the marginal and conditional probability distributions.

Module 1

Introduction to Probability: Random experiment, Sample space, events, classical definition of probability, statistical regularity, field, sigma field, axiomatic definition of probability and simple properties, addition theorem (two and three events), conditional probability of two events, multiplication theorem, independence of events-pair wise and mutual, Bayes theorem and its applications.

(25 hours)

(12 hours)

(15 hours)

Module 2

Random variables: Discrete and continuous, probability mass function (pmf) and probability density function (pdf)-properties and examples, Cumulative distribution function and its properties, change of variables (univariate case only)

Module 3

Mathematical expectations (univaraite): Definition, raw and central moments (definition and relationships), moment generation function and properties, characteristic function (definition and use only), Skewness and kurtosis using moments

Module 4

Bivariate random variables: Joint pmf and joint pdf, marginal and conditional probability, independence of random variables, function of random variable. Bivariate Expectations, conditional mean and variance, covariance, Karl Pearson Correlation coefficient, independence of random variables based on expectation.

(20 hours)

References :

- 1. V. K. Rohadgi, An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern.
- 2. S.C.Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand and Sons.
- 3. A.M. Mood, F.A. Graybill and D C Bose, Introduction to Theory of Statistics, McGraw Hill.
- 4. John E Freund, Mathematical Statistics, Pearson Edn, New Delhi
- 5. Hoel P.G. Introduction to mathematical statistics, Asia Publishing house.

Unit/ session/ hours (time Required)	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching		Activity	Learning outcome (output)	Assessment
Module 1 Introduction to probability 25 hours	 Basic concepts of probability Axiomatic definition Bayes theorem 	Lecture Problems	•	Assignment- Problems	To understand the basic concepts of probability axioms and rules	Class tests, assignment
Module-2 Random variables 12 Hours	 Discrete and continuous random variables Change of avriables 	 Lecture Problem solving Discussion 	•	Seminars Assignment	To understand to derive probability density functions	Class Tests. Assignment
Module-3 Mathematical expectations 15 Hours	 Raw moments and central moments Skewness and kurtosis 	 Lecture Discussion Problem solving 	•	Assignment		Assignment test
Module-4 Bivariate random variables 20 Hours	 Marginal and conditional probability Karl Pearsons correlation coefficient 	 Lecture Problem solving Discussion 	•	Seminar	how to derive the	Evaluation through class test.

Course outcomes

	To understand the basic concepts of probability axioms and rules
CO1	
	To understand to derive probability density functions
CO2	
	To understand the relationship between raw moments and central moments
CO3	
	To understand how to derive the marginal and conditional probability distributions.
CO4	

UNIT WISE BREAK UP

LECTURE HOURS: 90

OBJECTIVE

- *a)* The major objective of probability theory is to provide the basic concepts of probability axioms and rules. Able to understand how to derive the probability density functions.
- b) To understand the relationship between raw moments and central moments

To understand how to derive the marginal and conditional probability distributions. To understand the concepts of independence of two random variables

c) To understand to find skewness and kurtosis using moments.

Module Number	Торіс	No. of Lecture Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
Module 1 :	Introduction to probability theory	25			
Unit 1.	Basic concepts of probability	6	Concept of	Lecture and	To make short notes
Unit 2.	Axiomatic definition	15	probability, sample space, events	Discussion	
Unit 3.	Bayes theorem	4			
Module 2	Random variables	12			
Unit 1.	Discrete and continuous random variables	9	Basic definitions and properties of random variables	Lecture and Problems	Class test
Unit 2.	Change of variables	3	Definitions and problems	Lecture and Problems	Assignment
Module 3	Mathematical expectations	15			
Unit 1	Raw and central moments	10	Relationship between raw and central moments	Lecture and Problems	Assignment
Unit 2.	Skewness and kurtosis	5	Skewness and kurtosis using moments	Lecture	Class test
Module Numbe r	Торіс	No. of Lecture Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
Module 4	Bivariate random variables	20			
Unit 1.	Joint probability density and probability mass functions	7	Concepts of marginal and conditional probability	Problems	Applied problems
Unit 2.	Bivariate expectations	7	Conditional mean and variance	Lecture and problems	Applied problems
Unit 2.	Karl Pearsons correlation coefficient	6	Independence based on expectation	Lecture and problems	Class test

Teacher in Charge : Geethu Gopinath

ME2CO2 MATHEMATICAL ECONOMICS Lecture Hours per week: 4, Credits:2 Internal: 15, External: 60, Examination 2 Hours

Objectives

To familiarize student with the use of Mathematical tools in Economics

Module I(Text 1) (9 Hrs.)

Inequalities in Income Inequalities in Income-Causes of inequalities, Measures to reduce inequality, Measurement of inequality of income- Lorenz curve, Gini ratio. (9 Hrs)

Module II (Text 2) (18Hrs)

Chapter 14: Calculus of Several Variable: Directional Derivatives and Gradients, the gradient vector, Explicit functions from \mathbb{R}^n to \mathbb{R} , Approximation by Differentials, Jacobian derivative, The Chain rule, Higher Order Derivative. Continuously differentiable functions, Second order derivatives and Hessians, Young's theorem, An economic application

Chapter 17 Unconstrained Optimization: Definitions, First Order Conditions, Second Order Conditions, sufficient conditions, necessary conditions, Global Maxima and Minima, Global Maxima of Concave Functions, Economic Applications, profit maximizing firm, discriminating monopolist, least squares analysis

Module III (Text 2) (18Hrs)

Chapter 18 Constrained Optimization I: First Order Conditions : Objective function, constraint functions, Examples, Equality Constraints, two variables and one equality constraint, several equality constraints, inequality constraints, one inequality constraint, several inequality constraints, Mixed Constraints, Constrained Minimization Problems, Kuhn-Tucker Formulation, Examples and Applications,

(Sec. 18.1,18.2,18.3,18.4,18.5,18.6,18.7)

Module IV(Text 3)(19Hrs)

Input Output Analysis Introduction – assumption-technological coefficient matrix-closed and open input output model-coefficient matrix and open model-the Hawkins-Simon conditions-solutions for two industries determination of equilibrium of prices- coefficient matrix and closed model-The Leontief production function-limitation of input output analysis (sec.19.1 to 19.7, 19.9,19.11,19.13)

Texts					
Text (1)	M L Jhingan: Micro Economic Theory(6/e) Vrinda Publications				
Text (2)	Carl P Simon, Lawrence Blume: Mathematics for Economists W. W. Norton & Company, Inc (1994) ISBN 0-393-95733-O				
Text (3)	Mchta-Madnani: Mathematics for Economics Revised Edn S Chand				

References:

- 1 .A C Chiang & K Wainwright: Fundamentals of Mathematical Economics (4/e) McGraw Hill
- 2.R G D Allen: Mathematical Analysis for Economists Macmillain
- 3 .Urmila Diwekar: Introduction to Applied Optimization(2/e) Springer

Science+Business Media, LLC(2008) ISBN: 978-0-387-76634-8

4 .Michael D Intriligator: Mathematical Optimization and Economic

Theory Classics in Applied Mathematics, SIAM(2002)

5 .Akinson: Distribution and Inequality Measures TMH

OBJECTIVES

- a) Understand the application of different types of optimization techniques
- b) Understand the application of Input Output Analysis

		LESSON	PLAN		
Unit/ session/ hours (time Required)	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output)	Assessment
Module 1 Income Inequalities 9 Hours	Causes of inequalities, Measures to reduce inequality, Measurement of inequality of income	DiscussionParticipative	• Problem solving	To understand the importance of: • Income Inequali ties •	Evaluation Through te paper
Module-2 Calculus of Several Variable, Unconstrained Optimization 18 Hours	Directional Derivatives, Higher Order Derivative, Continuously differentiable functions, Definitions, First Order Conditions, Second Order Conditions,	LectureDiscussion	• Finding New examples	the application of	Through te paper
Module-3 Constrained Optimization 18 Hours	First Order Conditions : Objective function, constraint functions, Equality Constraints constrained Minimization Problems, Kuhn- Tucker Formulation	LectureDiscussion	Finding New examples	the Constrained	Through te paper
Module IV Input Output Analysis 19 Hours	Introduction – assumption closed and open input output model- coefficient matrix and open model-the -The Leontief production function- limitation of input output analysis	LectureDiscussion	Problem solving	To understand the application and significance of Input output model in economics	Through te paper

Course outcomes

CO1	Understand the inequalities in income
	Understand the application of derivatives in economics
CO2	
CO3	Understand and apply different types of constrained and unconstrained optimization
CO4	Understand the concept of Input Output analysis

UNIT WISE BREAK UP

LECTURE HOURS: 64

OBJECTIVE

- a) Understand the application of different types of optimization techniques
- b) Understand the application of Input Output Analysis

LESSON PLAN

Module Number	Торіс	No. o Lectur Hou	e Pre- class	Pedagogy (in class)	Out of class assignment
Module 1 :	Income Inequalities	()		
Unit 1.	inequalities In income, cause of inequalities		Awareness about		To make a short
Unit 2.	Measures to reduce inequality.		5 social injustices in income	Lecture and Discussion	note on world's labor policies,
Unit 3.	Lorenz curve, Gini ratio	,	3		nuoor poneies,
Module 2	calculus of several variable	1	8		
Unit 1.	calculus of several variable, directional derivatives		5 To read about theory on directional derivatives	Lecture and Discussion	Problem solving
Unit 2.	young's theorem unconstrained optimization		5 To learn the basic idea about unconstrained optimization	Lecture and Discussion	Problem solving
Unit 3	globel maxima and minin profit maximizing firm discriminating monopoli least squares analysis		To understand derivatives	Lecture and Discussion	Problem solving
Module 3	constrained optimization	1	8		
Unit 1	constrained optimization equality constrained	5	To read on the concept of constraints and Optimization	Lecture and Discussion	Problems on Making different types of constraint
Unit 2	inequality constraint mixed constraints		To read on the concept of different types of constraints	Lecture and Discussion	Problems on Making different types of constrain
Unit 3	constrained minimization Kuhn-tucker formulation		³ To realize the concept of constraints and minimization	Lecture and Discussion	Problems on how to formulate constraint minimization
Module 4	Input Output Analysis	1	9		
Unit 1.	input output analysis hawkins-simon conditior		5 To understand the applications of input output analysis	Illustrations and problems	Problems solving on hawkins-simon

Unit 2.	determination of equilibrium of8	To understand the	Illustrations	Problems solving
	prices	applications of	and	using matrix
	coefficient matrix and closed mo	odel matrix	problems	
Unit 3.	the Leontief production function	To understand the		Short note on
	limitation of input output analysi	is limitations	Discussion	different
				application of
				input output
				analysis

Teacher in Charge: SREEDEVI P.N.

MTS2B02 CALCULUS OF SINGLE VARIABLE-1 Lecture Hours per week: 4, Credits:4 Internal: 20, External: 80, Examination 2.5 Hours

SYLLABUS.

Text : Calculus – Soo T Tan

OBJECTIVE : To introduce students to the fundamental ideas of limit, continuity and differentiability and also to some basic theorems of *differential calculus*. It is also shown how these ideas can be applied in the problem of sketching of curves and in the solution of some optimization problems of interest in real life

MODULE 1 (20 Hours)

(Functions and Limits)

0.2: Functions and their Graphs- Definition of a Function, Describing Functions, Evaluating Functions, Finding the Domain of a Function, The Vertical Line Test, Piecewise Defined Functions, Even and Odd Functions (quick review)

0.4: Combining functions- Arithmetic Operations on Functions, Composition of Functions, Graphs of Transformed Functions, Vertical Translations, Horizontal Translations, Vertical Stretching and Compressing, Horizontal Stretching and Compressing, Reflecting

1.1: Intuitive introduction to Limits- A Real-Life Example, Intuitive Definition of a Limit, One-Sided Limits, Using Graphing Utilities to Evaluate Limits

1.2: Techniques for finding Limits-Computing Limits Using the Laws of Limits, Limits of Polynomial and Rational Functions, Limits of Trigonometric Functions, The Squeeze Theorem.

1.3: Precise Definition of a Limit- ε - δ definition, A Geometric Interpretation, Some illustrative examples

1.4: Continuous Functions- Continuity at a Number, Continuity at an Endpoint, Continuity on an Interval, Continuity of Composite Functions, Intermediate Value Theorem

1.5: Tangent Lines and Rate of change- An Intuitive Look, Estimating the Rate of Change of a Function from Its Graph, More Examples Involving Rates of Change, Defining a Tangent Line, Tangent Lines, Secant Lines, and Rates of Change

2.1: The Derivatives-*Definition*, Using the Derivative to Describe the Motion of the Maglev, Differentiation, Using the Graph of f to Sketch the Graph of f' Differentiability, Differentiability and Continuity

2.4: The role of derivative in the real world- Motion Along a Line, Marginal Functions in Economics

2.9: Differentials and Linear Approximations- increments, Differentials, Error Estimates, Linear

Approximations, Error in Approximating Δy by dy

MODULE 2 (17 Hours)

(Applications of the Derivative)

3.1: Extrema of Functions - Absolute Extrema of Functions, Relative Extrema of Functions , *Fermat's Theorem*, Finding the Extreme Values of a Continuous Function on a Closed Interval, An Optimization Problem

3.2: The Mean Value Theorem-Rolle's Theorem, *The Mean Value Theorem*, Some Consequences of the Mean Value Theorem, Determining the Number of Zeros of a Function

3.3: Increasing and Decreasing Functions- *definition*, *inferring the behaviour of function from sign of derivative*, Finding the Relative Extrema of a Function, *first derivative test*

3.4: Concavity and Inflection points- Concavity, Inflection Points, The Second Derivative Test, The Roles of f and f'' in Determining the Shape of a Graph

3.5 : Limits involving Infinity; Asymptotes- Infinite Limits, Vertical Asymptotes, Limits at Infinity, Horizontal Asymptotes, Infinite Limits at Infinity, Precise Definitions

3.6 : Curve Sketching-The Graph of a Function, Guide to Curve Sketching, Slant Asymptotes , Finding Relative Extrema Using a Graphing Utility

3.7: Optimization Problems – *guidelines for finding absolute extrema* Formulating Optimization Problems- *application involving several real life problems*

MODULE 3 (14 Hours)

(Integration)

4.1: Anti derivatives, Indefinite integrals, Basic Rules of Integration, *a few basic integration formulas and rules of integration*, Differential Equations, Initial Value Problems

4.3: Area- An Intuitive Look, The Area Problem, Defining the Area of the Region Under the Graph of a Function*technique of approximation ['Sigma Notation' and 'Summation Formulas' Omitted]* An Intuitive Look at Area (Continued), Defining the Area of the Region Under the Graph of a Function-*precise definition*, Area and Distance 4.4: The Definite Integral- Definition of the Definite Integral, Geometric Interpretation of the DefiniteIntegral, The Definite Integral and Displacement, Properties of the Definite Integral, More General Definition of the Definite Integral

4.5: The Fundamental Theorem of Calculus- How Are Differentiation and Integration Related?, The Mean Value Theorem for Definite Integrals, The Fundamental Theorem of Calculus: Part I,*inverse relationship between differentiation and integration*, Fundamental Theorem of Calculus: Part 2, Evaluating Definite Integrals Using Substitution, Definite Integrals of Odd and Even Functions, The Definite Integral as a Measure of NetChange

MODULE 4 (13 Hours)

(Applications of Definite Integral)

- 5.1: Areas between Curves- A Real Life Interpretation, The Area Between Two Curves, Integrating with Respect to *y adapting to the shape of the region*, What Happens When the Curves Intertwine?
- 5.2 : Volume Solids of revolution, *Volume by* Disk Method, *Region revolved about the x-axis, Region revolved about the y-axisVolume by the* Method of Cross Sections ['Washer Method' omitted]
- 5.4 : Arc Length and Areas of surfaces of revolution- Definition of Arc Length, Length of a Smooth Curve, *arc length formula*, The Arc Length Function, *arc length differentials*, Surfaces of Revolution, *surface area as surface of revolution*,

5.5: Work-Work Done by a Constant Force, Work Done by a Variable Force, Hook's Law, Moving non rigid matter, Work done by an expanding gas

References

1	Joel Hass, Christopher Heil & Maurice D. Weir : Thomas' Calculus(14/e) Pearson (2018) ISBN 0134438981
2	Robert A Adams & Christopher Essex : Calculus Single Variable (8/e) Pearson Education Canada (2013) ISBN: 0321877403
3	Jon Rogawski & Colin Adams : Calculus Early Transcendentals (3/e) W. H. Freeman and Company(2015) ISBN: 1319116450
4	Anton, Bivens & Davis : Calculus Early Transcendentals (11/e) John Wiley & Sons, Inc.(2016) ISBN: 1118883764
5	Anton, Bivens & Davis : Calculus Early Transcendentals (11/e) John Wiley & Sons, Inc.(2016) ISBN: 1118883764
6	Jerrold Marsden & Alan Weinstein : Calculus I and II (2/e) Springer Verlag NY (1985) ISBN 0-387-90974-5 : ISBN 0-387-90975-3

MTS2B02 CALCULUS OF SINGLE VARIABLE-1 Lecture Hours per week: 4, Credits: Internal: 20, External: 80, Examination 2.5 Hours

LESSON PLAN

Unit/ session/ hours (time Required)	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output)
Module 1 Functions and Limits 20 hours	Concept of limit, Continuity and derivative of functions	 Discussion Participative learning 	Group discussion	To understand the Evaluation Concept of Through MCQ limit, Continuity and derivative of functions
Module-2 Applications of the Derivative 17 Hours	Extrema of Functions, The Mean Value Theorem, Concavity and Inflection points, Optimization Problems.	 Lecture Assignmen t Problem solving 	 Group discussion Assignment 	To understand Test paper applications of the derivative
Module-3 Integration 14 Hours	Area, The Definite Integral, The Fundamental Theorem of Calculus.	 Lecture Discussion Experiential Learning 	• Seminar	To understand the Viva the concept of Integration

Unit/ session/ hours (time Required)	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching	Ac	ctivity	Learning outcome (output)	Assessment
Module-4:	Areas between	• Discussion	•	Semin	To understand the	Evaluation
Applications	Curves,	• Lecture		ar	applications of	through MCQ
of Definite	Volume,	 Participative 			Definite Integral	
Integral	Arc Length and	learning				
13 Hours	Areas of					
	surfaces of					
	revolution,					
	Work,					
	Moments and					
	Center of Mass.					

Course outcomes

CO1	To give an account of the concept of functions and their graphs
CO2	To determine the limit, continuity and differentiability of a function
CO3	To use derivatives in applications
CO4	To familiar with integration and Fundamental Theorem of Calculus
CO5	To use integrals for the computation of area of surface of revolution, arc length, work, moments and centre of mass

UNIT WISE BREAK UP

LECTURE HOURS: 64

OBJECTIVE

- To familiar with Functions and Limits. •
- To understand the use of applications of Derivative. To introduce the concept of Integration. To give an account of applications of Definite Integral. •
- •
- •

Module Number	Торіс	No. of Lecture Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
Module 1:	Functions and Limits	20			
Unit 1.	limit, and of functions		limit, Continuity the g	PLG understand the geometry of limit, continuity	
Unit 2.	Continuity of functions	7	functions.	discussion	and derivative of functions
Unit 3	Derivative of functions	7			with the help of You Tube videos
Module 2	Applications of the Derivative	17			
Unit 1.	Extrema of Functions, The Mean Value Theorem	6	Read basic information from	Lecture, Discussion and Illustration	Problems of previous question papers.
Unit 2.	Concavity and Inflection points	6	Plus two text books		
Unit 3	Optimization Problems	5		Lecture and Discussions	Discussion of results in PLG

Module 3	Integration	14			
Unit 1	Area	5	The concept of	,	Problems of Integration.
Unit 2	The Definite Integral	5	Integration, the definite	discussion and Illustration	

Unit 3	The Fundamental Theorem of Calculus	4	integral, the fundamental theorem of Calculus.	Discussion and Illustration	Discussion of results in PLG
Module 4	Applications of Definite Integral	13			
Unit 1.	Areas between Curves,	4	Read Basic information.		Discussion of results in PLG
Unit 2.	Volume, Arc Length and Areas of surfaces of revolution,	4		Seminar, Lecture and Illustration	Problems of arc length.
Unit 3.	Work, Moments and Center of Mass.	5			Application of integration in real life

Teacher in Charge: Jomesh Jose

DEPARTMENT OF MATHEMATICS (SELF)

SEMESTER 4

Course	Title	Contact Hours	Credits	Internal	External	Total Marks
Complimen tary	STA4C04 Statistical Inference and Quality nControl	5	3	15	60	75
Complimen tary	ME4C04	5	2	15	60	75
Core	MTS4 B04 Linear Algebra	5	4	20	80	100

STA 4C 04 STATISTICAL INFERENCE AND QUALITY CONTROL. Lecture Hours per week: 5, Credits: 3 Internal: 15, External: 60, Examination 2 Hours

Objectives

The major objective of statistical inference is to provide estimates of unknown parameters from sample statistics.

Module I

Estimation *theory*: Parametric sample estimation. Nayman space, space, point Factorization criteria, Requirements of good estimator: Unbiasedness, Consistency, Efficiency, Sufficiency and completeness. Minimum variance unbiased (MVU) estimators. Cramer-Rao only). Minimum Variance inequality (definition Bound (MVB) estimators. Methods of estimation: Maximum likelihood estimation and Moment estimation methods (Detailed discussion with problems); Properties of maximum likelihood estimators (without proof); Least and minimum variance only). squares (concepts Interval estimation: Confidence interval (CI); CI for mean and variance of Normal distribution; Confidence interval for binomial proportion and population correlation coefficient when population is normal. (30 Hours)

Module II

Testing of Hypothesis: Level of significance, Null and Alternative hypotheses, simple and composite hypothesis ,Types of Errors, Critical Region, Level of Significance, Power and pvalues. Most powerful tests, Neyman-Pearson Lemma (without proof), Uniformly Most powerful tests. Large sample tests: Test for single mean, equality of two means, Test for single proportion, equality of two proportions. Small sample tests: t-test for single mean, unpaired and paired t-test. Chi-square test for equality of variances, goodness of fit, test of independence and association of attributes. Testing means of several populations: One Way ANOVA, Two Way ANOVA (assumptions, hypothesis, ANOVA table and problems) (30 Hours)

Module III

Non-parametric methods: Advantages and drawbacks; Test for randomness, Median test, Sign test, Mann-Whiteny U test, Wilcoxon test; Kruskal Wallis test (Concept only) (10 hours)

Module IV

Quality Control: General theory of control charts, causes of variations in quality,

control limits, sub-grouping, summary of out-of-control criteria. Charts of variables - X bar chart, R Chart and sigma chart. Charts of attributes – c-charts, p-chart and np-chart. (Concepts and problems).(20 hours)

Reference Books:

1. V. K. Rohadgi, An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern.

2. Gupta, S.P. Statistical Methods. Sultan Chand and Sons: New Delhi.

3. S.C.Gupta and V. K. Kappor, *Fundamentals of Mathematical Statistics*, Sultan Chand and Sons

4. A.M. Mood, F.A. Graybill and D C Bose, *Introduction to Theory of Statistics*, McGraw Hill

5. John E Freund, Mathematical Statistics, Pearson Edn, NewDelhi

6. Grant E L, Statistical quality control, McGraw Hill

7. Montegomery D C, Introduction to Statistical Quality Control, John Wiley and sons.

OBJECTIVES

- *c)* The major objective of statistical inference is to provide estimates of unknown parameters from sample statistics. Researchers make point estimates and interval estimates. Point estimates are sample statistics used to estimate the exact value of a population parameter.
- *d)* The main objective of statistical quality control (SQC) is to achieve quality in production and service organizations, through the use of adequate statistical techniques.

Unit/ session/ hours (time Required)	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output)
Module 1 Estimation Theory 30 hours	 Requirements of good estimator Methods of estimation Interval estimation 	 Lecture Problems 	• Assignment- Problems	To understand the Evaluation importance of estimation theory in Statistical Inference
Module-2	• Basic definitions	• Lecture	• Case study	To test the Class Tests.

LESSON PLAN

Course Plan 2020-2021

Testing of Hypothesis 30 Hours	of testing of hypothesis • Large sample tests • Small sample tests • Analysis of Variance	•	Problem solving Discussion	•	Assignment	significant difference of population parameters.	
Module-3 Non- parametric methods 10 Hours	• Different non- parametric methods	•	Lecture Discussion	•	Seminar	To understand the significance of distribution free tests.	Assignment test
Module-4: Quality control 20 Hours	 Theory of control charts Control charts for variables Control charts for attributes 	•	Lecture Lecture with the help of power Point presentati on Problem solving	•	Case Study	Implementation	Evaluation through class test.

Course outcomes

	To understand the importance of estimation theory in Statistical Inference
CO1	
CO2	To test the significant difference of population parameters.
CO3	To understand the significance of distribution free tests.
CO4	Implementation process of Statistics and Quality Control

UNIT WISE BREAK UP

LECTURE HOURS: 90

OBJECTIVE

- a) The major objective of statistical inference is to provide estimates of unknown parameters from sample statistics. Researchers make point estimates and interval estimates. Point estimates are sample statistics used to estimate the exact value of a population parameter.
- b) The main objective of statistical quality control (SQC) is to achieve quality in production and service organizations, through the use of adequate statistical techniques.

Module Number	Торіс	No. of Lecture Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
Module 1 :	Estimation Theory	30			
Unit 1.	Point Estimation	18			
Unit 2.	Interval Estimation	12			To make short
			Concept of	Lecture and	notes of
			population, sample,	Discussion	parameters,
			parameter and		statistics
			statistic		
Module 2	Testing of Hypothesis	30			
Unit 1.	Large sample tests	10	Basic definitions	Lecture and	Short case study
			of testing,	Problems	presentation of
			meaning of		problems
			sample size		
Unit 2.	Small sample tests	12	When we	Lecture and	Short case
			consider a	Problems	study
			sample size as		presentation of
			small		problems
Unit 3	Testing means of	8	To understand	Lecture and	Short case study
	several populations		the	Problems	presentation of
			estimation		problems
Module 3	Non-parametric	10			
	methods				
Unit 1	Different types of	10	Difference	Lecture and	Applications of
	non-parametric tests		between	Problems	non-parametric

			parametric and non-parametric tests		tests
Module Numbe r	Торіс	No. of Lecture Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
Module 4	Quality Control	20			
Unit 1.	Control charts for variables	5	Meaning of 'Quality ' of a product	Illustrations and Work sheet	Applied problems
Unit 2.	Control charts for attributes	5	Meaning of attribute, defect, defective	Illustrations and Work sheet	Applied problems

Teacher in Charge : Ms Jiji M B

ME4CO4 MATHEMATICAL ECONOMICS Lecture Hours per week: 5, Credits:2 Internal: 15, External: 60, Examination 2 Hours

Objectives

To familiarize student with the use of Mathematical tools in Economics

Module I(Text 1) (18 Hrs.)

Introduction to Econometrics-The nature of Regression Analysis-Two variable Regression Analysis

(pages 1 to 59 of Text)

Module II (Text 2) (22 Hrs)

Two variable Regression Model

(sec. 3.1 to 3.9; pages 60 to 103)

Classical normal linear regression model-two variable Regression-Internal Estimation and Hypothesis testing,

(sec. 4.1 to 4.5 and 5.1 to 5.13)

Module IV(Text 3)(18 Hrs)

Extensions of the two variable linear regression model

(sec. 6.1 to 6.10)

Texts

Text	Damodar N Gujarati & Sangeetha : Basic Economics(4/e) TMH Indian Reprint	
	2008	

References:

1.Jeffrey M. Wooldridge :Introductory Econometrics: A Modern

Approach (6/e) *Cengage Learning*(2016)

2 .S P Singh, A P Parashar, H P Singh: Econometrics and Mathematical Economics S. Chand

3.Douglas C. Montgomery, Elizabeth A. Peck, Geoffrey Vining:

Introduction to Linear Regression Analysis (5/e) John Wiley & Sons

(2012)

4 .Christopher Dougherty :Introduction to Econometrics(3/e) Oxford University Press(2007)

OBJECTIVES

e) Understand the application of regression analysis in economic theory

LESSON PLAN

Unit/ session/ hours (time Required)	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output)	Assessment
Module 1 Introduction to Econometrics 18 Hours	Simple linear re Nature and sour	ces o leanning gression model b	• Discuss on econometrics asic idea	 To understand the importance of: Statistics in economic models Mathematics in economic models 	Evaluation Through test paper
Module-2 Two variable Regressi on Model 22 Hours	Properties of Ol Test of significa Guass markov t Coefficient of d Coefficient of c Monte carlo exp	nce Dipatanieter heorem etermination orrelation	• Discuss on estimatession	application of	Evaluation Through test paper
Module-3 Classical normal linear regression model 22 Hours	model Properties of Ol Introduction to testing	interval estimation rval of variance	estimation and	application of estimation and testing	Evaluation Through test paper
Module IVExtensions ofthe two variablelinearregressionmodel18 Hours	Regression thro Functional form Reciprocal mod	isof Byrassion n		application of other regression modles	Evaluation Through test paper

Course outcomes

	Understand the concept of econometrics
CO1	
	Understand the theoretical concept of regression analysis
CO2	
	Apply regression analysis in economic problems.
CO3	

UNIT WISE BREAK UP

LECTURE HOURS: 80

OBJECTIVE

a) Understand the application of regression analysis in economic theory

LESSON PLAN

Module Number	Торіс	No. of Lecture Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
	Introduction to Econometrics	18			
Unit 1.	Introduction to econome Simple linear regression Nature and sources of da	model	Understand the concept of econometrics	Lecture and Discussion	To make a short note on regression
Unit 2.	Two variable regression model basic idea	6	Understand the concept of regression		analysis,
Unit 3.	The sample regression function	6	Understand the concept of regression		
Module 2	Тwo	22			
	variable				
	Regression				

	Model				
Unit 1.	Problem of estimation Properties of OLS	10	Understand different types of methods for finding	Illustrations and problems	Problem solving
Unit 2.	Test of significance of pa Gauss markov theorem	Gameter	Ū.		
Unit 3	Coefficient of determina Coefficient of correlation Monte carlo experiment		correlation		
Module 3	Classical normal linear regression model	22			
Unit 1	Introduction to classical model Properties of OLS unde		normality	Illustrations and problems	Problems solving
Unit 2	Introduction to interval e testing Confidence interval of va Hypothesis testing	stitinatio	h and hypothesis Understand the concept of estimation of parameters and testing of hypothesis	Illustrations and problems	Problems solving
Unit 3	Regression analysis and Analysis of variance	5	Understand the concept of ANOVA	Illustrations and problems	Problems solving
Module 4	Extensions of the two variable linear regression model	18			
Unit 1.	Regression through origin	5	Understand the concept of regression models in economics	Lecture and Discussion	Problems solving
Unit 2.	Functional forms of regression model	8	Understand the concept of regression models in economics	Lecture and Discussion	Problems solving
Unit 3.	Reciprocal models	5	Understand the concept of regression models in economics	Lecture and Discussion	Problems solving

Teacher in Charge: SREEDEVI P.N.

FOURTH SEMESTER

MTS4 B04 LINEAR ALGEBRA

5 hours/week

4 credits

Syllabus

Text Book: Elementary Linear Algebra: Application Version(11/e): Howard Anton & Chris

Rorres Wiley (2014) ISBN 978-1-118-43441-

Module I: Systems of Linear Equations & Matrices (17 Hours)

1.1: Introduction to Systems of Linear Equations- linear equation in n variables, linear system of m equations in n variables, solution, Linear Systems in Two and Three Unknowns, solution by geometric analysis, consistent and inconsistent systems, linear system with no, one, and infinite number of solutions, augmented matrix and elementary row operations

- 1.2: Gaussian elimination Considerations in Solving Linear Systems, Echelon Forms, reduced row echelon form, Elimination Methods, Gauss–Jordan elimination, Gaussian elimination, Homogeneous Linear Systems, Free Variables, Free Variable Theorem for Homogeneous Systems, Gaussian Elimination and Back- Substitution, Some Facts about Echelon Forms
- 1.3: Matrices and Matrix operations- Matrix Notation and Terminology, row vector, column vector, square matrix of order n, Operations on Matrices, Partitioned Matrices, Matrix Multiplication by Columns and by Rows, Matrix Products as Linear Combinations, linear combination of column vectors, Column-Row Expansion, Matrix Form of a Linear System, Transpose of a Matrix, Trace of a Matrix
- 1.4: Inverses and algebraic properties of matrices- Properties of Matrix Addition and Scalar Multiplication, Properties of Matrix Multiplication, Zero Matrices and Properties, Identity Matrices, Inverse of a Matrix, Properties of Inverses, Solution of a Linear System by Matrix Inversion, Powers of a Matrix, Matrix Polynomials, Properties of the Transpose
- 1.5: Elementary matrices and a method for finding A^{-1} -row equivalence, elementary matrix, Row Operations by Matrix Multiplication, invertibility of elementary matrices, invertibility and equivalent statements, A Method for Inverting Matrices, Inversion Algorithm, illustrations.
- 1.6: More on linear systems and invertible matrices Number of Solutions of a Linear System, Solving Linear Systems by Matrix Inversion, Linear Systems with a Common Coefficient Matrix, Properties of Invertible Matrices, equivalent statements for unique solution of Ax = b, determining consistency

1.7: Diagonal, Triangular and Symmetric Matrices-Diagonal Matrices, Inverses and Powers of Diagonal Matrices, Triangular Matrices. Properties of Triangular Matrices, Symmetric Matrices, algebraic properties of symmetric matrices, Invertibility of Symmetric Matrices

1.8: Matrix transformation- definition, Properties of Matrix Transformations, standard matrix, A Procedure for Finding Standard Matrices

2.1: Determinants by cofactor expansion- minors, cofactors, cofactor expansion, Definition of a General Determinant, A Useful Technique for Evaluating 2× 2 and 3 × 3 Determinants

2.2: Evaluating determinants by row reduction- a few basic theorems, elementary row operations and determinant, determinant of elementary matrices, determinant by row reduction

Module II: General vector spaces (18 hrs)

- 4.1: Real vector space Vector Space Axioms, examples, Some Properties of Vectors
- 4.2: Subspaces- definition, criteria for a subset to be a subspace, examples, Building Subspaces, linear combination, spanning, Solution Spaces of Homogeneous Systems as subspace, The Linear Transformation Viewpoint, kernel, different set of vectors spanning the subspace.
- 4.3: Linear Independence- Linear Independence and Dependence, illustrations, A Geometric Interpretation of Linear Independence, Wronskian, linear independence using Wronskian
- 4.4: Coordinates and basis-Coordinate Systems in Linear Algebra, Basis for a Vector Space, finite and infinite dimensional vector spaces, illustrations, Coordinates Relative to a Basis, Uniqueness of Basis Representation
- 4.5: Dimension- Number of Vectors in a Basis, dimension, Some Fundamental Theorems, dimension of subspaces,

Module III (22 hrs)

4.6: Change of basis -Coordinate Maps, Change of Basis, Transition Matrices, Invertibility of Transition Matrices, An Efficient Method for Computing Transition Matrices for \mathbb{R}^n , Transition to the Standard Basis for \mathbb{R}^n

4.7: Row space, Column space and Null space- vector spaces associated with matrices, consistency of linear system, Bases for Row Spaces, Column Spaces, and Null Spaces, basis from row echelon form, Basis for the Column Space of a Matrix, row equivalent matrices and relationship between basis for column space, Bases Formed from Row and Column Vectors of a Matrix

- 4.8: Rank Nullity and Fundamental matrix spaces- equality of dimensions of row and column spaces, Rank and Nullity, Dimension Theorem for Matrices, The Fundamental Spaces of a Matrix, rank of a matrix and its transpose, A Geometric Link Between the Fundamental Spaces, orthogonal complement, invertibility and equivalent statements, Applications of Rank, Overdetermined and Underdetermined Systems
- 4.9: Basic matrix transformations in R^2 and R^3 -Reflection Operators, Projection Operators, Rotation Operators, Rotations in \mathbb{R}^3 , Dilations and Contractions, Expansions and Compressions, Shears, Orthogonal Projections onto Lines Through the Origin, Reflections About Lines Through the Origin
 - 4.10: Properties of matrix transformation- Compositions of Matrix Transformations, One-to-One Matrix Transformations, Kernel and Range, fundamental relationship between invertibility of a matrix and its matrix transformation, Inverse of a One-to-One Matrix Operator

Module IV (23 hrs)

4.11: Geometry of matrix operators-Transformations of Regions, Images of Lines Under Matrix Operators, Geometry of Invertible Matrix Operators, Elementary matrix and its matrix transformation, consequence

- 5.1: Eigen values and Eigen Vectors- definition, Computing Eigenvalues and Eigenvectors, characteristic equation, alternative ways of describing eigen values, Finding Eigenvectors and Bases for Eigenspaces, Eigenvalues and Invertibility, Eigenvalues of General Linear Transformations,
- 5.2: Diagonalization- The Matrix Diagonalization Problem, linear independence of eigen vectors and diagonalizability, Procedure for Diagonalizing a Matrix, Eigenvalues of Powers of a Matrix, Computing Powers of a Matrix, Geometric and Algebraic Multiplicity
- 6.1: Inner Product definition of General inner product, Euclidean inner product (or the standard inner product) on \mathbb{R}^n , norm of a vector, properties (up to and including theorem 6.1.1), a few examples (only example7 and example 10) [rest of the section omitted]
- 6.2: Angle and orthogonality in Inner product spaces- only the definition of orthogonality in a real inner product space (to be motivated by the relation in the definition (3) of section 3.2) and examples(2),(3) and (4)
- 6.3: Gram–Schmidt Process- definition of Orthogonal and Orthonormal Sets, examples, linear independence of orthogonal set, orthonormal basis, Coordinates Relative to Orthonormal

Bases ['Orthogonal Projections' omitted] The Gram–Schmidt Process [only statement of Theorem 6.3.5 and the step by step construction technique are required; derivation omitted], illustrations- examples 8 and 9, Extending Orthonormal Sets to Orthonormal Bases [rest of the section omitted]

- 7.1: Orthogonal Matrices- definition, characterisation of orthogonal matrices, properties of orthogonal matrices, Orthogonal Matrices as Linear Operators, a geometric interpretation [rest of the section omitted]
- 7.2: Orthogonal Diagonalization- The Orthogonal Diagonalization Problem, Conditions for Orthogonal Diagonalizability, Properties of Symmetric Matrices, Procedure for Orthogonally Diagonalizing an n × n Symmetric Matrix, Spectral Decomposition (up to and including example 2) [rest of the section omitted]

References

- 1. Jim De Franza, Daniel Gagliardi: Introduction to Linear Algebra with Applications Waveland Press, Inc (2015) ISBN: 1-4786-2777-8
- Otto Bretscher: Linear Algebra with Applications(5/e) Pearson Education, Inc (2013) ISBN: 0-321-79697-7
- 3. Ron Larson, Edwards, David C Falvo: Elementary Linear Algebra (6/e) Houghton Mifflin Harcourt Publishing Company (2009) ISBN: 0-618-78376-8
- David C. Lay, Steven R. Lay, Judi J. McDonald: Linear Algebra and its Application (5/e) Pearson Education, Inc (2016) ISBN: 0-321-98238-X
- 5. Martin Anthony, Michele Harvey: Linear Algebra: Concepts and Methods Cambridge University Press (2012) ISBN: 978-0-521-
- 6. Jeffrey Holt: Linear Algebra with Applications W. H. Freeman and Company (2013) ISBN: 0-7167-8667-2

OBJECTIVES

- a) To develop a deep knowledge about matrices and matrix operations also provide methods to solve system of linear equations.
- b) To understand the concept of vector spaces.
- c) To understand the connection between real vector spaces and matrices.
- d) To develop basic knowledge about eigen vectors, inner product spaces and matrix diagonalization.

	LESSON PLAN						
Unit/ session/ hours (time Required)	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output)	Assessment		
Module 1 Systems of linear equations & Matrices 17 hours	Elementary operations in matrix; Determinant, rank and inverse of a matrix; System of linear equations	 Lecture Discussion Problem solving 	 Peer group discussion on how to solve a system of linear equations in two or more variables 	• Various methods for	Evaluation through MCQ and test paper		
Module-2 General vector spaces 18 Hours	Vector space, Subspace, Dimension	 Lecture Discussion Participative learning Problem solving 	seminars to explain vector	To understand the concept of vector space and its dimension	Evaluation Through test paper		
Module-3 22 Hours	Change of basis, Matrix spaces, Matrix transformation	0	seminar on matrix	To understand the connection between vector spaces and matrix	Through		
Module-4 23 Hours	Eigen values and Eigen vectors, Diagonalization, Inner product, Orth	 Lecture Discussion Problem solving 	vectors of square matrices	 To understand: The concept pf eigen vectors Diagonalization and orthogonality Inner product 	Evaluation Through MCQ and test paper		

Course Outcomes

CO1	To solve systems of linear equations
CO2	To understand the concept of matrices, operations on matrices and its properties
CO3	To understand the concept of vector spaces
CO4	To learn deeply about matrix transformations and determine eigen values of a given matrix and diagonalization process

CO5 To understand the concept of inner product and orthogonalization

UNIT WISE BREAK UP

LECTURE HOURS: 80

Module Number	Торіс	No. of Lecture Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
Module 1:	Theory of numbers	17			
Unit 1.	System of linear equations	7	Read the basic concept of matrix and matrix		Discussion of problems from previous
Unit 2.	Inverse of matrices	5	operations from	Lecture, Discussion and	question papers
Unit 3	Determinants	8	Plus Two Maths text book (Part 1)	Problem solving	
Module 2	General Vector Spaces	18			
Unit 1.	Vector space and subspaces	8	Read the concept of	Group discussion	Discussion of results in PLG
Unit 2.	Linear independence	4	binary		
Unit 3	Dimension	6	operations and their properties from Plus Two Maths text book (1)	Lecture, Discussions and Problem solving	Assignments to find the dimensions of some vector spaces
Module 3		22			
Unit 1	Change of basis, row and column spaces	8			Discussion of results in PLG
Unit 2	Rank-nullity and matrix spaces	6	Understand the concept of vector	Lecture, Discussion, Illustration and Problem solving	
Unit 3	Matrix transformations	8	space and matrices		Discussion of problems from previous question papers
Module 4		23			
Unit 1.	Matrix operators; Eigen values and eigen vectors	7	Understand the concepts of matrix and matrix spaces from previous modules	Lecture, Discussion, Illustration	Assignment to find the eigen vectors of 4 × 4 matrices

			and Problem solving	
Unit 2.	Diagonalization	5		
Unit 3.	Inner product	4		Previous question
				paper discussion
Unit 4	Orthogonality: Gram-	7		Discussion of
	Schmidt process,			results in PLG
	Orthogonal			
	diagonalization			

Teacher in Charge :Naveen V.V